2019-11-20

.
T UNIVERSITY OF WA
A FacuLTY OF ENGINEER

ECE 150 Fundamentals.of Programming

Outline

* In this lesson, we will:
— Review that arrays can be great under certain circumstances
— See that there are significant weaknesses
« Fixed size
« Expensive to move many entries
« Same type
— Understand that there must be other appraoches

Arrays Arrays can be fast
+ Up to now, if we want to store an arbitrary amount of data, we + Arrays can be blindingly fast:
must use an array — Accessing or changing an entry is very fast
— We can create a structure with a fixed number of member « Sometimes called random access
variables, but we can’t change that amount — Ifitis sorted, we can search it quickly

* Recall that arrays occupy a block of memory
— The memory is either allocated
« Statically by the compiler on the stack, or
» Dynamically by the operating system on the heap
— In either case, you cannot go back and change the allocated
memory

* Suppose you have an array with capacity 20, but it is currently
storing 10 pieces of information:

I EN Y Y AN) A R

» Next, suppose a new datum comes along that must be placed first,
say 17:

|i7[11:3[;o[319[21[21[22[21[23[22[2[11 [u [13 [14 [15 [16 [17 [18 [19‘

— This required us copy all ten entries over by one

The cost of memory

+ Increasing any of these has cascading effects:
— Increasing the weight may either:
+ Decrease portability
« Increase weight-bearing structures
— Increasing cost will decrease competitive advantages or decrease
profits
Increasing power consumption may either:
« Decrease battery life
« Increase the battery size
— This further increases the weight
— Increasing heat may either:
* Require a larger heat sink and cooling apparatus
— Thus further increasing the weight

» Decrease lifetime

2019-11-20

The cost of memory

* Another issue is: suppose you normally only need to store on the
order of 10 items, but in the worst case, you may have to store
hundreds of items of data

— Is it not a waste of memory to perpetually store a sufficiently large
array that may be used a few minutes a day

» This is not an issue with larger general-purpose computing where
memory is cheap, but consider an embedded system
— Additional memory costs includes an increase in
* weight
* cost
* power consumption
* heat

Queues in operating systems

» This is also an issue with operating systems
— There are many queues were, for example, an executing program is
waiting
* To use the printer
« For additional memory
« For input

* Most of these queues are empty or perhaps with one or two
executing programs waiting some service
— Unfortunately, the operating system must always be ready for an
arbitrary number of executing programs waiting for some service...
— Do we have an array of size 1024 for each such service?
* How about 2048?

R S

Concatenating arrays

» Suppose we have two arrays, and we want to concatenate them:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[7fsofsafsafs7fea] | [[| [[[[[[[][]
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[eforfasfsofualao]sofaa] | | [| [[[[[[][]

— Not a problem: copy the entries from the second to the first
— Still slow if the second array is large

_ Issues with'arrays
i

Strings

* Suppose we have a string which we are editing:
“A Elbereth Gilthoniel
silivren penna miriel
o menel aglar elenath!
Na-chaered palan-diriel
o galadhremmin ennorath,
Fanuilos, le linnathon
nef aear, si nef aearon!”

+ Strings are by default stored as arrays
— How much work is required to edit an array?

2019-11-20

T Al

Concatenating arrays

¢ What do we do here?
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[27]39]82]84 [57 825848 273785 [9a 2375 [asfes| [| [|

[24[;7129129112129[Zg[;[:1[;[;05[1312[;[:32[14 [15 [16 [17 [18 [19]

— What must we do now?
— This will be even more expensive...why?

_sIssues with's
P

Text editors

+ Similarly, in your IDE, you are editing your code:

As a file, it is an array of
characters, but if you are
editing it, you cannot store
it as an array...

» All the arrays we have looked at so far also have one important
weakness:

— All primitive arrays must be of the same type

— At the very least, all entries must occupy the same amount of
memory

_/Issues with'@
i

References

[1] No references?

2019-11-20

Summary

» Following this lesson, you now
— Understand there are weaknesses in arrays
« They cannot effectively be used in all situations
— Know that the characteristics of arrays are sometimes weaknesses

— Understand that we need a different approach to storing arbitrary
amounts of information

_sIssues with
=

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

2019-11-20

